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Risk management advocates have
long sought to directly influence the early
stages of the systems engineering process
through a more effective role in system
design trade studies, The principal obstacle
to this has been the lack of credible ways to
represent and quantify mission risk—that is,
mission return from a probabilistic
viewpoint—for the project manager and the
rest of the design team. If it were possible to
quantify mission risk, then the effects of
proposed mission and system design
changes could be calculated, and along with
life-cycle costs, could be used to select
better designs.

This paper describes the systems
analytic framework for calculating risk-based
measures of effectiveness (MoEs)  for the
Mars Sample Return (MSR) mission planned
for the early part of the next decade. The
framework integrates a number of diverse
models and simulations, each of which
contributes some vital piece of the puzzle.
The integrated models and simulations
include: Mars environments models, a rover
operations simulation, reliability models and
simulations, a precision landing model, and
a decision tree model. The paper concludes
with results and lessons learned from this
approach.

Risk management advocates have
long sought to directly influence the early
stages of the systems engineering process
through a more effective role in system
design trade studies. The principal obstacle
to this has been the lack of credible ways to
represent and quantify mission risk—that is,

mission return from a probabilistic
viewpoint—for the project manager and the
rest of the design team. In other words, risk
managers have often been stymied by their
inability to measure what they are trying to
manage. If it were possible to quantify
mission risk, then the effects of proposed
mission and system design changes could
be calculated, and along with life-cycle
costs, could be used to select better
designs.l h

Calculating mission return in a
probabilistic way leads to some very natural
measures of effectiveness (MoEs) for the
mission. These risk-based MOES can show
the project manager (or other decision
maker), for a given design, what confidence
is associated with each level of mission
return, or alternatively, what design
improvements (or descopes) are needed in
order to reach a given level of confidence in
a particular level of mission return. Further,

.——
1 When the concept of probabilistic mission
return is introduced, one must be careful in
defining what is meant by a “better” design.
A strong definition involves stochastic
dominance. Design Alternative A
stochastically  dominates Alternative B if As
mission return is greater than or equal to B’s
at each probability level. One might also
consider situations in which Alternative A is
a little worse than B at near-nominal
conditions, but a great deal better when off-
nominal conditions are encountered.
Alternative A may then be considered a
more robust design. Choosing between
alternatives in which stochastic dominance
does not occur is usually handled by picking
the one that maximizes the expected (von
Neumann) utility, where the utility function is
defined over the domain of mission return.



calculating a probabilistic mission return is
an essential step toward building MOES that
can take into account the project manager’s
risk aversion—that is, how much the project
manager is willing to pay to avoid adverse
outcomes on the tail of the mission return
probability distribution.

Decision analysis and risk models
provide the framework for calculating risk-
based MoEs. In early work for the Phfo
Fast F/yby project, since renamed to FYuto
Express, three related risk-based MOES

were calculated: (1) the probability of
returning at least one gigabit (Gbit) of
science data, (2) the expected volume (in
Gbits)  of science data returned, and (3) the
certainty equivalent science data volume
(again, in Gbits).2 Even though all three
measures used probability information
generated by a decision analysis model, only
the third took into account the project
manager’s attitude toward risk. These risk-
based measures were profitably used in
trade studies of alternative mission and
system designs+ne of the first such uses.

The decision analysis model from
which these project-level calculations were
made contained detail only down to the
system level. For example, overaH
spacecraft reliability (as a function of time)
was an input, not the reliability of each
spacecraft subsystem or component. To
gain credibility as a trade study technique,
future decision analysis and risk models
must take the level of detail to the
subsystem level or lower. This paper
focuses on the framework for doing so for
the Mars Sample Return (MSR) mission
planned for the early part of the next decade.

The objective of the Mars Sample
Return mission is to return a number of
samples of the Martian surface to Earth for
detailed scientific studies. The mission is

2 Certainty equivalent here means the
volume of science data (say, x Gbits) that
leaves the decision maker (who could be the
sponsor, project scientist, or project
manager) indifferent between the choice of x
with certainty and the uncertain volume they
will actually receive from the mission.

technically difficult because a number of
successful transactions must occur among
the various systems employed. Those
systems must also operate over an
extended period of time in the harsh Martian
environment, which itself cannot be
characterized with a high degree of certainty.
In one mission architecture, the MSR
involves sending one or more planetary
surface rovers to examine, collect, or cache
small (C 10 grams) samples of Martian
rocks. A separate ascentheturn vehicle(s),
launched much later than the caching
rover(s), also carries a rover, but one
designed for retrieving the cached samples.
This ascent-lreturn  vehicle performs a
precision landing near a caching rover
loaded with samples. The refrieva/ rover
sprints to the caching rover and returns to
the ascentketurn vehicle with the precious
samples. These are then transferred to the
ascentlreturn vehicle for the return trip to
Earth. Command and communication
between Earth and this Martian ensemble
are maintain with the help of a separate
relay satellite in Mars orbit.

For the purpose of this paper, I have
focused on the surface operations portion of
the MSR. Some sophisticated risk-related
questions one might ask about this mission
architecture include: (1) what is the
probability of a single retrieval rover and
ascenUreturn vehicle combination
performing a successful rendezvous and
transfer with a single caching rover, (2) what
is the cumulative distribution function for the
n u m b e r  o f samples del ivered to
ascent.lvehicle(  s), taking into account
multiple such vehicles and rovers, and (3)
what is the cumulative distribution function
for the utility of samples delivered to
ascenthehicle(s), taking into account
multiple such vehicles and rovers. The
calculations needed to answer these
questions (and to compute risk-related
MoEs) are complex because they depend on
the details of the design of each of the
systems employed and on the Martian
environment in which they must operate.
The ability, however, to make such
calculations would permit trade studies (to
be performed) that result in better rover



design requirements and risk mitigation
strategies.

Of course, there are other
risks that the project (or risk) manager faces
in the design and development phases of the
MSR, e.g., the risk of exceeding a fixed
development budget, or of falling short on a
critical design parameter. Techniques for
identifying, analyzing, mitigating, and
tracking these risks have been documented
elsewhere. 3 In this paper, I will not focus on
these risks, but rather on the risks
associated with the retrieval rover’s ability in
returning the cache of samples to the
ascentketurn vehicle. i plan to calculate a
risk-based mission effectiveness metric by
characterizing the retrieval rover’s reliability
in performing that task. The calculation
relies heavily on the use of simulations of the
rover and its interactions with the Mars
environments. The design models and
simulations used to make this calculation
include a rover operations simulations
constructed using a commercial system
architecting tool, called FORESIGHT (C3
NuThena)  and a JPL-developed rover
reliability simulation written in FORTRAN.

A decision tree model, currently
embodied in another commercial tool called
DPL4 (G Applied Decision Analysis, Inc.), is
used to represent combinations of Mars
environment parameters and their
respective probabilities. DPL is also used to
complete the analysis as the results
provided by the design simulations and
models (i.e., the “consequences” of different
environmental parameters for the retrieval
rover reliability) are returned to the decision
tree and used to calculate the risk-based
metric for mission/system trade studies. The
ensemble of interacting models and
simulations is shown as Figure 1.

The technical approach first involves
constructing a decision tree model that
represents Mars environmental uncertain-
ties. Three environmental uncertainties are

3 See, for example, Ref. [1], pp.37-44.
4 DPL = Decision Programming Language

represented in the DPL model: (1) surface
roughness, (2) optical depth (also known as
atmospheric opacity and denoted by the
letter tau), and (3) deviations from the
nominal diurnal near-suti~ce temperature
cycle. The current tree allows three different
values for the surface roughness parameter,
six different values for tau, and three
deviations for temperature-making 54
combinations in all. All three parameters are
treated as site-specific; the latter two are
season-specific as well.5

These Mars environmental para-
meters are the responsibility of the Mars
geologists and climatologists. Traditionally,
they have provided system engineers with
point estimates for these parameters, but the
risk analysis approach requires that they
provide a range of values and their
respective probabilities. While the environ-
mental uncertainties may be interesting it’s
their effects on the systems that are
important for mission effectiveness.

Consider the effect of optical depth.
The optical depth affects the rover’s solar
array power system. In daylight hours, the
maximum amount of power that can be
generated is reduced by higher values of
tau. The rover is able to travel fewer hours
each sol on average and must spend more
time recharging its batteries. The effect of
optical depth on the Sojourner’s solar arrays
is shown in Figure 2. (Sojourner did not
have a rechargeable battery, but the caching
and retrieval rovers will. ) Next, consider
surface roughness. A higher degree of
roughness slows the rover’s progress toward
its target, and increases the total distance
traveled (avoiding large obstacles) and
energy drawn from the power system.

——. —
5 Time of year on Mars is usually denoted by
areocentric  longitude, where zero degrees
refers to the vernal equinox in the northern
hemisphere. The Mars Pathfinder landing
occurred, for example, at an areocentric
longitude of 143°, which is roughly mid-to-
Iate Summer.
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F’igure l—The ensemble of models and simulations used in the MSR risk analysis.
Arrows indicate the flow of information from one model to another. This is usually mediated bv the
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Figure 2—Maximum raw power is reduced by higher values of tau. In dust storms (tau=5. 0),
power requirements for traversing terrain can exceed power production, even at its peak at noon.



Figure 3--A synthetic Mars terrain that statistically and geologically mimics the Viking
Lander 2 site. This image was generated by the Mars Terrain Simulator.

One of the important environment
models that is needed by the FORESIGHT
rover simulation is a high resolution
representation of Mars terrain. Fortunately,
a capability to generate statistically and
geologically correct synthetic Martian
surfaces already existed as a result of
research conducted in the early 1990s [Ref.
2]. Furthermore, JPL software, called the
Mars Terrain Simulator (MTS), could be
readily adapted to the rover analysis. The
simulation produces a topological map of the
surface, selected portions of which can be
viewed at arbitrarily high resolution (- 1 cm)
to accommodate engineering, landing, and

exploration studies. The current version of
the simulation also adds the illumination
effects of an atmosphere. The topographical
map can be based on statistically known
Martian sites (e.g., from Viking Lander 1 and
2), or on user-provided statistics. A camera
model built into the MTS provides a stereo
view of the terrain viewed from an arbitrary
location, say, a rover. Figure 3 shows a
synthetic MTS surface based on the Viking
Lander 2 site as seen from the Sojourner’s
cameras.

The FORESIGHT rover simulation
takes a specific set of environmental
conditions and calculates operational



outcomes such as the actual distance
traveled and actual elapsed time of travel
required to cover a specified geodesic
distance. This simulation uses rover
subsystem design characteristics as key
inputs. Changes in the rover design can be
quickly accommodated in FORESIGHT, and
the model is intended to be reusable over
several missions. One role of the rover
simulation is to provide quantitative values
for the failure drivers (e.g., operating time,
distance driven, on-off cycles needed to
complete the mission) in the rover hardware
reliability model.

The FORESIGHT rover simulation is
run many times so as to ensure a sufficient
sample of results. These results are then
passed to the rover hardware reliability
model. This model does three calculations:
(1) applies probabilistic physics of failure
reliability equations to each component,
taking into account temperature variations
described in the DPL decision tree model,
(2) convolutes these results with
FORESIGHT outcomes, and (3) produces
failure probabilities for a particular rover
design (based on its equipment list). These
results are then returned to DPL for final
processing into a cumulative distribution
function (calf) of the retrieval rover’s reliability
in the sample return mission.

The geodesic distance the retrieval
rover must travel to complete its mission is
itself a random variable because the actual
landing point of the ascentheturn vehicle is
seldom the same as the targeted point.
The landing footprint can be modeled as a
hi-variate normal with independent standard
deviations in the longitudinal (OX)  and
transverse (I+ directions. A stochastic
model is needed to provide the parameters
of the landing dispersion. Such a model was
developed for the Mars Pathfinder parachute
and airbag entry, descent, and landing
system [Ref. 3].

For the MSR ascenffreturn  vehicle
landing on Mars, a precision propulsive
landing has been proposed and a new
stochastic landing model is needed. Such a
model is being developed by JPL and the

NASA Ames Research Center (ARC). Until
it is available, we assume OX = 3 km and OY =
1 km. These parameters are provided
directly to the DPL decision tree model.

Clearly, the risk-based MOES

depend on the accuracy of the precision
landing system and the inherent reliability of
the retrieval rover. The marginal
effectiveness of changes in the rover’s
design or the precision landing system’s
design can be computed in the analysis.
Trades across these two systems can be
made at the MSR project level once the
marginal costs of the design changes are
known.

Because the risk-based MOE S

require the interplay of many models (in
different languages, file formats, etc.), we
use the PDC/DNP6 Flight System
Parameters Database (in Oracle @ DBMS)
to move data from one model to another.
Each model is configured so as to take
advantage of this software architecture. The
MOES calculated in DPL are displayed as
part of a MSR Project Trades Model (PTM).7

For a variety of reasons, the first
FORESIGHT rover simulation was built
around the Sojourner design. We will refer
to this as the Sojourner simulation. One
reason was that the Sojourner design was
well understood and its technical parameters
were known; the MSR retrieval rover, by
contrast, is only in conceptual design at
present. Experience in building the
FORESIGHT rover simulation could better
be gained without having to guess at various
design parameters at this early stage.

One of the most diticult parts of
building the rover simulation model is

6 PDC/DNP  = Project  Design Center/
Develop New Products
7 The Project Trades Model is the principal
trade study tool used in the Project Design
Center. Each PTM is custom-built for a
mission with inputs coming from many
Phase A/B tools and simulations.



modeling the behavior of the Control and
Navigation Subsystem. The Sojourner
simulation uses the actual flight software for
the controlling the rover’s movement over
the synthetic Martian terrain. The optical
navigation algorithms for the MSR retrieval
rover are still under development. So a
second reason for starting with the Sojourner
simulation was the ease with which this
critical subsystem could be modeled.

A third reason was to use some
recently developed Sojourner wheel motor
failure models, as it was thought that these
components had an uncomfortably short life.

As of the time of this writing, we
have completed only a single series of test
runs of the Sojourner simulation. That series
of runs involved a single set of environ-
mental parameters and a set of different
initial rover positions all of which were 10
meters (geodesic distance) from the target.
The Mars environment selected was a very
clear day (Tau = 0.1) on a terrain that we
describe as a 50% Viking Lander 2 (VL2)
site. By that we mean that the statistical
size-frequency distribution of rocks and
craters was the same as characterized by
Golembek [Ref. 4] for VL2, except that the
absolute number of rocks and craters
(centers) per square meter was only half of
the actual VL2 site! This surface roughness
parameter was passed to the Mars Terrain
Simulator, which created our desired virtual
Martian terrain.

The  results of the S o j o u r n e r
simulation test runs for rover distance
actually traveled were converted into a
Weibull  probability density function using
well-known parameter estimation techniques
described in Ref. [5]. This curve is shown as
Figure 4.9

* Another way to explain this is to say that
we effectively removed half the rocks and
craters from the Viking Lander 2 site, but
retained its relative size-frequency
distribution.
9 Over these short distances, the actual
travel time exhibited a strong linear
correlation with actual travel distance, which

0.0450

0.0400

0.0350

0.0300

: 0.0250

: 0.0200

k 0.0150

0.0100

0.0050

0.0000
oe4-rcogo

WC-O b

Meters

Figure 6Weibull  Probability Density’ for
Sojourner Travel Distance To Go 10 Meters
Geodesic Distance Based on Simulation
Test Runs

This probability density function is
not to be trusted until many more simulation
runs have been made with geodesic
distance on the order of 100 meters instead
of 10. We are currently performing these
runs for all the combinations of Mars
environmental parameters in the MSR
decision tree model.

Once these simulations have been
run, the results will be passed to the rover
hardware reliability model. The resultant
reliability outcomes will then be passed to
the decision tree model to be merged with
the probability estimates for each
combination of Mars environmental
parameters. Since this has not occurred as
of this writing, I can only offer a prospective
look at what the decision tree model results
might look like.

Figure 5 shows what the results of
the decision tree model and analysis might
look like. Again the figure does not reflect

implies a probability density function for
travel time similar to that in Figure 4.



real data yet, but only what we might see.
The vertical axis shows the cumulative
probability of the rover’s reliability in
reaching the cache of samples and returning
to the ascentketurn vehicle from which it
started. The expected value of this
distribution is about 0.74, with the median
value just slightly higher at 0.75. Another
way of interpreting the figure is to say that
half of the probability density lies within the
reliability range from 0.7 to 0.8.
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Figure 5–-Potential results from the decision
tree model and analysis. The curve results
from the uncertainties in the Mars
environment at the landing site, the landing
dispersion, and the inherent reliability of the
retrieval rover.

Several risk-based MOES could be
quantified on the basis of the figure. One
could choose the mean, the median, or the
confidence that the reliability exceeds some
fixed level, say 80 percent. If the project
manager believes that the risk-based MoE is
unacceptably low, helshe can:

● Change the rover design by
adding redundancy, or raise subsystem
reliability and/or performance requirements;

● Improve the precision landing
capability of the ascentketurn vehicle;

● Change the landing site to
increase the probability of a “smoother” one,
or change the areocentric longitude to
reduce the probability of an adverse optical
depth; or

. Some combination of the above.

Each of these changes affects the
risk-based MoE, but has (mass, power, etc.)
implications for the entire project that must
be understood. Each alternative proposed
change must also be fully costed before one
is chosen.

Iusiom

The ultimate results of the decision
tree model and analysis are likely to have
important implications for the MSR rover
design (reliability, autonomy, etc.) and
overall risk mitigation strategies (mission
redundancy, hedges, precision landing
accuracy improvements).

For now, let me share some
observations and lessons learned so far.
Mission simulation, for risk analysis or other
objectives, requires coupling system
models/simulations to space environments
models. For in-situ missions, such as the
Mars Sample Return, the space
environments models need to provide a high
resolution representation of the terrain likely
to be traversed. We needed considerable
effort to integrate analytically the terrain
model, the Mars Terrain Simulator, with the
FORESIGHT rover simulation.

To contr ibute to r isk decision-
making and trade studies in a particular
project, space environments experts must
begin to provide probabilistic assessments
for each critical environmental factor.
Engineering “design-to” values (or “safe
assumptions”) for those factors do not
capture the full range of values that might be
realized on the mission.

Faster simulation execution time is
highly desirable in mission risk analysis
because of the number of cases (sets of
environmental parameters) and trials (to
ensure usable statistical characterizations)



that typically need to be run. It was even
suggested at JPL that we seek the services
of the Caltech  supercomputer as a way of
speeding up the analysis.

Lastly, there appears to be no
known obstacle to performing advanced risk
analysis using this federation of models and
simulations.
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